See how the motion of the simple pendulum is not-so-simple after all.

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Look at the calculus behind the simple act of a car going over a step.

Work in groups to try to create the best approximations to these physical quantities.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

At what positions and speeds can the bomb be dropped to destroy the dam?

Third in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Second in our series of problems on population dynamics for advanced students.

Why MUST these statistical statements probably be at least a little bit wrong?

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Sixth in our series of problems on population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

First in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

A brief video explaining the idea of a mathematical knot.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Formulate and investigate a simple mathematical model for the design of a table mat.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?