Why MUST these statistical statements probably be at least a little bit wrong?

Invent scenarios which would give rise to these probability density functions.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Third in our series of problems on population dynamics for advanced students.

At what positions and speeds can the bomb be dropped to destroy the dam?

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Second in our series of problems on population dynamics for advanced students.

How do these modelling assumption affect the solutions?

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

Fifth in our series of problems on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

Formulate and investigate a simple mathematical model for the design of a table mat.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Fourth in our series of problems on population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Look at the calculus behind the simple act of a car going over a step.

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Work in groups to try to create the best approximations to these physical quantities.

See how the motion of the simple pendulum is not-so-simple after all.

Simple models which help us to investigate how epidemics grow and die out.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Explore the transformations and comment on what you find.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

How do scores on dice and factors of polynomials relate to each other?

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?