You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

Simple models which help us to investigate how epidemics grow and die out.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Formulate and investigate a simple mathematical model for the design of a table mat.

The King showed the Princess a map of the maze and the Princess was allowed to decide which room she would wait in. She was not allowed to send a copy to her lover who would have to guess which path. . . .

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Explore the transformations and comment on what you find.

A brief video explaining the idea of a mathematical knot.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Can you explain why every year must contain at least one Friday the thirteenth?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Build a scaffold out of drinking-straws to support a cup of water

This article for students gives some instructions about how to make some different braids.

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Christmas trees are planted in a rectangular array. Which is the taller tree, A or B?

How does the time of dawn and dusk vary? What about the Moon, how does that change from night to night? Is the Sun always the same? Gather data to help you explore these questions.

Two cyclists, practising on a track, pass each other at the starting line and go at constant speeds... Can you find lap times that are such that the cyclists will meet exactly half way round the. . . .

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Sometime during every hour the minute hand lies directly above the hour hand. At what time between 4 and 5 o'clock does this happen?

Two buses leave at the same time from two towns Shipton and Veston on the same long road, travelling towards each other. At each mile along the road are milestones. The buses' speeds are constant. . . .

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

In a league of 5 football teams which play in a round robin tournament show that it is possible for all five teams to be league leaders.