Delight your friends with this cunning trick! Can you explain how it works?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you explain the strategy for winning this game with any target?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you find sets of sloping lines that enclose a square?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Can all unit fractions be written as the sum of two unit fractions?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

It would be nice to have a strategy for disentangling any tangled ropes...

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Charlie has moved between countries and the average income of both has increased. How can this be so?