Search by Topic

Resources tagged with Generalising similar to Facial Sums:

Filter by: Content type:
Stage:
Challenge level:

Christmas Chocolates

Stage: 3 Challenge Level:

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Picturing Triangular Numbers

Stage: 3 Challenge Level:

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Chess

Stage: 3 Challenge Level:

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

A Tilted Square

Stage: 4 Challenge Level:

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Nim-7

Stage: 1, 2 and 3 Challenge Level:

Can you work out how to win this game of Nim? Does it matter if you go first or second?

More Magic Potting Sheds

Stage: 3 Challenge Level:

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Tourism

Stage: 3 Challenge Level:

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Cunning Card Trick

Stage: 3 Challenge Level:

Delight your friends with this cunning trick! Can you explain how it works?

Maths Trails

Stage: 2 and 3

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Cubes Within Cubes Revisited

Stage: 3 Challenge Level:

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Have You Got It?

Stage: 3 Challenge Level:

Can you explain the strategy for winning this game with any target?

Card Trick 2

Stage: 3 Challenge Level:

Can you explain how this card trick works?

Number Pyramids

Stage: 3 Challenge Level:

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Jam

Stage: 4 Challenge Level:

A game for 2 players

Nim

Stage: 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Pentanim

Stage: 2, 3 and 4 Challenge Level:

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Triangle Numbers

Stage: 3 Challenge Level:

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Nim-like Games

Stage: 2, 3 and 4 Challenge Level:

A collection of games on the NIM theme

Nim-interactive

Stage: 3 and 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Winning Lines

Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Hypotenuse Lattice Points

Stage: 4 Challenge Level:

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

One, Three, Five, Seven

Stage: 3 and 4 Challenge Level:

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Threesomes

Stage: 3 Challenge Level:

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Enclosing Squares

Stage: 3 Challenge Level:

Can you find sets of sloping lines that enclose a square?

Picturing Square Numbers

Stage: 3 Challenge Level:

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Shear Magic

Stage: 3 Challenge Level:

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Stage: 3 Challenge Level:

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Painted Cube

Stage: 3 Challenge Level:

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Konigsberg Plus

Stage: 3 Challenge Level:

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Tilted Squares

Stage: 3 Challenge Level:

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Steel Cables

Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Intersecting Circles

Stage: 3 Challenge Level:

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Partly Painted Cube

Stage: 4 Challenge Level:

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Mystic Rose

Stage: 4 Challenge Level:

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Is There a Theorem?

Stage: 3 Challenge Level:

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Squares in Rectangles

Stage: 3 Challenge Level:

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Route to Infinity

Stage: 3 Challenge Level:

Can you describe this route to infinity? Where will the arrows take you next?

Steps to the Podium

Stage: 2 and 3 Challenge Level:

It starts quite simple but great opportunities for number discoveries and patterns!

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level:

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Handshakes

Stage: 3 Challenge Level:

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

More Number Pyramids

Stage: 3 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Jam

Stage: 4 Challenge Level:

To avoid losing think of another very well known game where the patterns of play are similar.

One O Five

Stage: 3 Challenge Level:

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Partitioning Revisited

Stage: 3 Challenge Level:

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Consecutive Negative Numbers

Stage: 3 Challenge Level:

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Mini-max

Stage: 3 Challenge Level:

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Lower Bound

Stage: 3 Challenge Level:

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =