The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nĀ² Use the diagram to show that any odd number is the difference of two squares.

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you find sets of sloping lines that enclose a square?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

It would be nice to have a strategy for disentangling any tangled ropes...

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Explore the effect of reflecting in two parallel mirror lines.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.