What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you find the area of a parallelogram defined by two vectors?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

It would be nice to have a strategy for disentangling any tangled ropes...

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Explore the effect of reflecting in two parallel mirror lines.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you find sets of sloping lines that enclose a square?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you find the values at the vertices when you know the values on the edges?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Charlie has moved between countries and the average income of both has increased. How can this be so?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Explore the effect of reflecting in two intersecting mirror lines.

It starts quite simple but great opportunities for number discoveries and patterns!

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .