Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nÂ² Use the diagram to show that any odd number is the difference of two squares.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you find the values at the vertices when you know the values on the edges?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Can you describe this route to infinity? Where will the arrows take you next?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

It would be nice to have a strategy for disentangling any tangled ropes...

It starts quite simple but great opportunities for number discoveries and patterns!

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

Can you find the area of a parallelogram defined by two vectors?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Charlie has moved between countries and the average income of both has increased. How can this be so?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Explore the effect of combining enlargements.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Explore the effect of reflecting in two intersecting mirror lines.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Can you find sets of sloping lines that enclose a square?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.