Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you find sets of sloping lines that enclose a square?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

It would be nice to have a strategy for disentangling any tangled ropes...

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Explore the effect of combining enlargements.

It starts quite simple but great opportunities for number discoveries and patterns!

Can you describe this route to infinity? Where will the arrows take you next?