Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Can you find the area of a parallelogram defined by two vectors?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you describe this route to infinity? Where will the arrows take you next?