Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
An account of some magic squares and their properties and and how to construct them for yourself.
Can you see how to build a harmonic triangle? Can you work out the next two rows?
The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.
What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”
A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?
Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?
Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?
ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.
Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.
To avoid losing think of another very well known game where the patterns of play are similar.
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?
Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.
Can you find the values at the vertices when you know the values on the edges?
A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
Can you explain the surprising results Jo found when she calculated the difference between square numbers?
Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?
Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?
Charlie has moved between countries and the average income of both has increased. How can this be so?
Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.
These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
Can you find sets of sloping lines that enclose a square?
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?