Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Make some loops out of regular hexagons. What rules can you discover?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Explore the effect of reflecting in two intersecting mirror lines.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you find sets of sloping lines that enclose a square?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

It starts quite simple but great opportunities for number discoveries and patterns!

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Can you describe this route to infinity? Where will the arrows take you next?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

What's the largest volume of box you can make from a square of paper?

Can all unit fractions be written as the sum of two unit fractions?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Explore the effect of reflecting in two parallel mirror lines.

Delight your friends with this cunning trick! Can you explain how it works?