Try entering different sets of numbers in the number pyramids. How does the total at the top change?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.
Can you explain the strategy for winning this game with any target?
Can you work out how to win this game of Nim? Does it matter if you go first or second?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?
15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?
Got It game for an adult and child. How can you play so that you know you will always win?
Nim-7 game for an adult and child. Who will be the one to take the last counter?
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.
Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?
Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?
Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Can you find sets of sloping lines that enclose a square?
It would be nice to have a strategy for disentangling any tangled ropes...
What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
Explore the effect of reflecting in two intersecting mirror lines.
Explore the effect of combining enlargements.
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
How many moves does it take to swap over some red and blue frogs? Do you have a method?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
To avoid losing think of another very well known game where the patterns of play are similar.
Can you describe this route to infinity? Where will the arrows take you next?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?