With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.
If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?
Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?
The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?
The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
How many moves does it take to swap over some red and blue frogs? Do you have a method?
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
Can you find sets of sloping lines that enclose a square?
Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.
A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?
Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .
What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?
The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.
Can all unit fractions be written as the sum of two unit fractions?
Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
Nim-7 game for an adult and child. Who will be the one to take the last counter?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
Can you describe this route to infinity? Where will the arrows take you next?
It starts quite simple but great opportunities for number discoveries and patterns!
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.