Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many centimetres of rope will I need to make another mat just like the one I have here?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Try out this number trick. What happens with different starting numbers? What do you notice?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Find the sum of all three-digit numbers each of whose digits is odd.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This task follows on from Build it Up and takes the ideas into three dimensions!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find out what a "fault-free" rectangle is and try to make some of your own.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

An investigation that gives you the opportunity to make and justify predictions.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

What happens when you round these numbers to the nearest whole number?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Here are two kinds of spirals for you to explore. What do you notice?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Nim-7 game for an adult and child. Who will be the one to take the last counter?