In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Are these statements always true, sometimes true or never true?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you explain the strategy for winning this game with any target?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

This task follows on from Build it Up and takes the ideas into three dimensions!

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Here are two kinds of spirals for you to explore. What do you notice?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge asks you to imagine a snake coiling on itself.