The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

It would be nice to have a strategy for disentangling any tangled ropes...

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Charlie has moved between countries and the average income of both has increased. How can this be so?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

An investigation that gives you the opportunity to make and justify predictions.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Find out what a "fault-free" rectangle is and try to make some of your own.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find the values at the vertices when you know the values on the edges?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This activity involves rounding four-digit numbers to the nearest thousand.

What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you describe this route to infinity? Where will the arrows take you next?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Nim-7 game for an adult and child. Who will be the one to take the last counter?