When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

It starts quite simple but great opportunities for number discoveries and patterns!

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you find sets of sloping lines that enclose a square?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Can you explain the strategy for winning this game with any target?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

It would be nice to have a strategy for disentangling any tangled ropes...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

This challenge asks you to imagine a snake coiling on itself.

This activity involves rounding four-digit numbers to the nearest thousand.

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this animation. What do you see? Can you explain why this happens?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .