Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find out what a "fault-free" rectangle is and try to make some of your own.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you find all the ways to get 15 at the top of this triangle of numbers?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Delight your friends with this cunning trick! Can you explain how it works?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

What happens when you round these numbers to the nearest whole number?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

What happens when you round these three-digit numbers to the nearest 100?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you work out how to win this game of Nim? Does it matter if you go first or second?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Can you explain the strategy for winning this game with any target?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?