Explore the effect of reflecting in two intersecting mirror lines.

Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

It would be nice to have a strategy for disentangling any tangled ropes...

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

What happens when you round these three-digit numbers to the nearest 100?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you describe this route to infinity? Where will the arrows take you next?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Nim-7 game for an adult and child. Who will be the one to take the last counter?