Search by Topic

Resources tagged with Generalising similar to Turning N Over:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 143 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

...on the Wall

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Explore the effect of reflecting in two intersecting mirror lines.

problem icon

Mirror, Mirror...

Stage: 3 Challenge Level: Challenge Level:1

Explore the effect of reflecting in two parallel mirror lines.

problem icon

Who Is the Fairest of Them All ?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the effect of combining enlargements.

problem icon

Overlap

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

problem icon

Taking Steps

Stage: 2 Challenge Level: Challenge Level:1

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

problem icon

Squares, Squares and More Squares

Stage: 3 Challenge Level: Challenge Level:1

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

problem icon

Counting Counters

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

problem icon

Dotty Circle

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

problem icon

Odd Squares

Stage: 2 Challenge Level: Challenge Level:1

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

problem icon

Move a Match

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Circles, Circles

Stage: 1 and 2 Challenge Level: Challenge Level:1

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

problem icon

2001 Spatial Oddity

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

problem icon

Cuisenaire Rods

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

More Number Pyramids

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Centred Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

For Richer for Poorer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Charlie has moved between countries and the average income of both has increased. How can this be so?

problem icon

Triangle Pin-down

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Crossings

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Number Differences

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Winning Lines

Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

problem icon

Egyptian Fractions

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

problem icon

Round the Three Dice

Stage: 2 Challenge Level: Challenge Level:1

What happens when you round these three-digit numbers to the nearest 100?

problem icon

Sums and Differences 1

Stage: 2 Challenge Level: Challenge Level:1

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

problem icon

Round the Four Dice

Stage: 2 Challenge Level: Challenge Level:1

This activity involves rounding four-digit numbers to the nearest thousand.

problem icon

Play to 37

Stage: 2 Challenge Level: Challenge Level:1

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

problem icon

Route to Infinity

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you describe this route to infinity? Where will the arrows take you next?

problem icon

Sums and Differences 2

Stage: 2 Challenge Level: Challenge Level:1

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

problem icon

Roll over the Dice

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

problem icon

Build it up More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This task follows on from Build it Up and takes the ideas into three dimensions!

problem icon

Build it Up

Stage: 2 Challenge Level: Challenge Level:1

Can you find all the ways to get 15 at the top of this triangle of numbers?

problem icon

Dice Stairs

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

problem icon

Walking the Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

problem icon

Nim-7 for Two

Stage: 1 and 2 Challenge Level: Challenge Level:1

Nim-7 game for an adult and child. Who will be the one to take the last counter?