Search by Topic

Resources tagged with Generalising similar to Maurits Cornelius Escher:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 149 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Mirror, Mirror...

Stage: 3 Challenge Level: Challenge Level:1

Explore the effect of reflecting in two parallel mirror lines.

problem icon

...on the Wall

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Explore the effect of reflecting in two intersecting mirror lines.

problem icon

Who Is the Fairest of Them All?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the effect of combining enlargements.

problem icon

Dotty Circle

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

2001 Spatial Oddity

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

problem icon

Triangle Pin-down

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

problem icon

Squares, Squares and More Squares

Stage: 3 Challenge Level: Challenge Level:1

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

problem icon

Odd Squares

Stage: 2 Challenge Level: Challenge Level:1

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

problem icon

Taking Steps

Stage: 2 Challenge Level: Challenge Level:1

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

problem icon

Move a Match

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

problem icon

Cuisenaire Rods

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

problem icon

Overlap

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Counting Counters

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

problem icon

Circles, Circles

Stage: 1 and 2 Challenge Level: Challenge Level:1

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

problem icon

Fault-free Rectangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find out what a "fault-free" rectangle is and try to make some of your own.

problem icon

Centred Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

problem icon

Spirals, Spirals

Stage: 2 Challenge Level: Challenge Level:1

Here are two kinds of spirals for you to explore. What do you notice?

problem icon

Tiling

Stage: 2 Challenge Level: Challenge Level:1

An investigation that gives you the opportunity to make and justify predictions.

problem icon

Broken Toaster

Stage: 2 Short Challenge Level: Challenge Level:1

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

problem icon

Cuboid Challenge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

problem icon

Rope Mat

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many centimetres of rope will I need to make another mat just like the one I have here?

problem icon

Searching for Mean(ing)

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

problem icon

Magic Vs

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

problem icon

Harmonic Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you see how to build a harmonic triangle? Can you work out the next two rows?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

Number Differences

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

problem icon

For Richer for Poorer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Charlie has moved between countries and the average income of both has increased. How can this be so?

problem icon

Masterclass Ideas: Generalising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Crossings

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Consecutive Negative Numbers

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Sums and Differences 1

Stage: 2 Challenge Level: Challenge Level:1

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

problem icon

Sums and Differences 2

Stage: 2 Challenge Level: Challenge Level:1

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

problem icon

Division Rules

Stage: 2 Challenge Level: Challenge Level:1

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

problem icon

Round the Dice Decimals 1

Stage: 2 Challenge Level: Challenge Level:1

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

problem icon

Round the Three Dice

Stage: 2 Challenge Level: Challenge Level:1

What happens when you round these three-digit numbers to the nearest 100?

problem icon

Round the Four Dice

Stage: 2 Challenge Level: Challenge Level:1

This activity involves rounding four-digit numbers to the nearest thousand.