This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Find the sum of all three-digit numbers each of whose digits is odd.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge asks you to imagine a snake coiling on itself.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can all unit fractions be written as the sum of two unit fractions?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Got It game for an adult and child. How can you play so that you know you will always win?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

It would be nice to have a strategy for disentangling any tangled ropes...

Can you explain the strategy for winning this game with any target?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

An investigation that gives you the opportunity to make and justify predictions.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many centimetres of rope will I need to make another mat just like the one I have here?