Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out what a "fault-free" rectangle is and try to make some of your own.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This task follows on from Build it Up and takes the ideas into three dimensions!

What happens when you round these three-digit numbers to the nearest 100?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

What happens when you round these numbers to the nearest whole number?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

This activity involves rounding four-digit numbers to the nearest thousand.

Here are two kinds of spirals for you to explore. What do you notice?

This challenge asks you to imagine a snake coiling on itself.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Find the sum of all three-digit numbers each of whose digits is odd.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Are these statements always true, sometimes true or never true?