In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find out what a "fault-free" rectangle is and try to make some of your own.

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Can you explain the strategy for winning this game with any target?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Delight your friends with this cunning trick! Can you explain how it works?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

It starts quite simple but great opportunities for number discoveries and patterns!

Here are two kinds of spirals for you to explore. What do you notice?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...