Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Can you explain the strategy for winning this game with any target?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Here are two kinds of spirals for you to explore. What do you notice?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Delight your friends with this cunning trick! Can you explain how it works?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

This task follows on from Build it Up and takes the ideas into three dimensions!

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Find out what a "fault-free" rectangle is and try to make some of your own.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

An investigation that gives you the opportunity to make and justify predictions.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?