A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Can all unit fractions be written as the sum of two unit fractions?

Can you find sets of sloping lines that enclose a square?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

It would be nice to have a strategy for disentangling any tangled ropes...

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are two kinds of spirals for you to explore. What do you notice?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Explore the effect of combining enlargements.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Explore the effect of reflecting in two intersecting mirror lines.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Are these statements relating to odd and even numbers always true, sometimes true or never true?