Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Delight your friends with this cunning trick! Can you explain how it works?

Find out what a "fault-free" rectangle is and try to make some of your own.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.