Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you explain the strategy for winning this game with any target?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Find out what a "fault-free" rectangle is and try to make some of your own.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Got It game for an adult and child. How can you play so that you know you will always win?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

This challenge asks you to imagine a snake coiling on itself.

Can you describe this route to infinity? Where will the arrows take you next?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

It starts quite simple but great opportunities for number discoveries and patterns!

Explore the effect of reflecting in two intersecting mirror lines.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Here are two kinds of spirals for you to explore. What do you notice?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4