Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Make some loops out of regular hexagons. What rules can you discover?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Here are two kinds of spirals for you to explore. What do you notice?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you find sets of sloping lines that enclose a square?

Can all unit fractions be written as the sum of two unit fractions?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Explore the effect of combining enlargements.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Explore the effect of reflecting in two intersecting mirror lines.

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Can you explain the strategy for winning this game with any target?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?