Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Got It game for an adult and child. How can you play so that you know you will always win?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you work out how to win this game of Nim? Does it matter if you go first or second?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Find out what a "fault-free" rectangle is and try to make some of your own.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are two kinds of spirals for you to explore. What do you notice?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An investigation that gives you the opportunity to make and justify predictions.

Delight your friends with this cunning trick! Can you explain how it works?

This activity involves rounding four-digit numbers to the nearest thousand.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

What happens when you round these three-digit numbers to the nearest 100?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.