This activity involves rounding four-digit numbers to the nearest thousand.

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What happens when you round these numbers to the nearest whole number?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Delight your friends with this cunning trick! Can you explain how it works?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Here are two kinds of spirals for you to explore. What do you notice?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you find all the ways to get 15 at the top of this triangle of numbers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This task follows on from Build it Up and takes the ideas into three dimensions!

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.