This activity involves rounding four-digit numbers to the nearest thousand.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

What happens when you round these numbers to the nearest whole number?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Delight your friends with this cunning trick! Can you explain how it works?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Here are two kinds of spirals for you to explore. What do you notice?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

This task follows on from Build it Up and takes the ideas into three dimensions!

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

An investigation that gives you the opportunity to make and justify predictions.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Are these statements always true, sometimes true or never true?