Are these statements relating to odd and even numbers always true, sometimes true or never true?

An investigation that gives you the opportunity to make and justify predictions.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Are these statements always true, sometimes true or never true?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Here are two kinds of spirals for you to explore. What do you notice?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Are these statements relating to calculation and properties of shapes always true, sometimes true or never true?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

This challenge is about finding the difference between numbers which have the same tens digit.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

This activity involves rounding four-digit numbers to the nearest thousand.

What happens when you round these numbers to the nearest whole number?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.