Watch the video of Fran re-ordering these number cards. What do you notice? Try it for yourself. What happens?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Florence, Ethan and Alma have each added together two 'next-door' numbers. What is the same about their answers?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Are these statements always true, sometimes true or never true?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here are two kinds of spirals for you to explore. What do you notice?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

This challenge asks you to imagine a snake coiling on itself.

This activity involves rounding four-digit numbers to the nearest thousand.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This is a game for two players. Can you find out how to be the first to get to 12 o'clock?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.