Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Here are two kinds of spirals for you to explore. What do you notice?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

It starts quite simple but great opportunities for number discoveries and patterns!

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Florence, Ethan and Alma have each added together two 'next-door' numbers. What is the same about their answers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This activity involves rounding four-digit numbers to the nearest thousand.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Are these statements always true, sometimes true or never true?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

This challenge is about finding the difference between numbers which have the same tens digit.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Can you find all the ways to get 15 at the top of this triangle of numbers?

What happens when you round these three-digit numbers to the nearest 100?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens when you round these numbers to the nearest whole number?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This task follows on from Build it Up and takes the ideas into three dimensions!

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Find out what a "fault-free" rectangle is and try to make some of your own.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?