This challenge is about finding the difference between numbers which have the same tens digit.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

An investigation that gives you the opportunity to make and justify predictions.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This activity involves rounding four-digit numbers to the nearest thousand.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Try out this number trick. What happens with different starting numbers? What do you notice?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Find out what a "fault-free" rectangle is and try to make some of your own.

What happens when you round these numbers to the nearest whole number?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Find the sum of all three-digit numbers each of whose digits is odd.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

This challenge asks you to imagine a snake coiling on itself.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

How many centimetres of rope will I need to make another mat just like the one I have here?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.