Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Find the sum of all three-digit numbers each of whose digits is odd.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This task follows on from Build it Up and takes the ideas into three dimensions!

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Florence, Ethan and Alma have each added together two 'next-door' numbers. What is the same about their answers?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge is about finding the difference between numbers which have the same tens digit.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Are these statements relating to calculation and properties of shapes always true, sometimes true or never true?

What happens when you round these three-digit numbers to the nearest 100?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

An investigation that gives you the opportunity to make and justify predictions.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

What happens when you round these numbers to the nearest whole number?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This is a game for two players. Can you find out how to be the first to get to 12 o'clock?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.