I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Which of these triangular jigsaws are impossible to finish?

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

What can you say about the common difference of an AP where every term is prime?

Keep constructing triangles in the incircle of the previous triangle. What happens?

Sort these mathematical propositions into a series of 8 correct statements.

Have a go at being mathematically negative, by negating these statements.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Can you work out where the blue-and-red brick roads end?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

An article which gives an account of some properties of magic squares.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Prove Pythagoras' Theorem using enlargements and scale factors.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.