Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

How many noughts are at the end of these giant numbers?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

By proving these particular identities, prove the existence of general cases.

Can you find the value of this function involving algebraic fractions for x=2000?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Relate these algebraic expressions to geometrical diagrams.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Kyle and his teacher disagree about his test score - who is right?

Four jewellers share their stock. Can you work out the relative values of their gems?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Can you explain why a sequence of operations always gives you perfect squares?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Can you make sense of these three proofs of Pythagoras' Theorem?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

A introduction to how patterns can be deceiving, and what is and is not a proof.

Can you make sense of the three methods to work out the area of the kite in the square?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.