Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Four jewellers share their stock. Can you work out the relative values of their gems?

Do you have enough information to work out the area of the shaded quadrilateral?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Can you find the value of this function involving algebraic fractions for x=2000?

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Relate these algebraic expressions to geometrical diagrams.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Kyle and his teacher disagree about his test score - who is right?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Can you make sense of these three proofs of Pythagoras' Theorem?

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you explain why a sequence of operations always gives you perfect squares?

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

By proving these particular identities, prove the existence of general cases.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Can you make sense of the three methods to work out the area of the kite in the square?

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

A introduction to how patterns can be deceiving, and what is and is not a proof.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?