The sums of the squares of three related numbers is also a perfect square - can you explain why?

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

What can you say about the common difference of an AP where every term is prime?

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Can you rearrange the cards to make a series of correct mathematical statements?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Have a go at being mathematically negative, by negating these statements.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

A introduction to how patterns can be deceiving, and what is and is not a proof.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Kyle and his teacher disagree about his test score - who is right?