This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

By proving these particular identities, prove the existence of general cases.

Can you work through these direct proofs, using our interactive proof sorters?

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

What can you say about the common difference of an AP where every term is prime?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

What fractions can you divide the diagonal of a square into by simple folding?

Can you make sense of these three proofs of Pythagoras' Theorem?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Have a go at being mathematically negative, by negating these statements.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?