# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Weekly Challenge 45: Integral Arranging:

Filter by: Content type:
Stage:
Challenge level:

##### Other tags that relate to Weekly Challenge 45: Integral Arranging
Generalising. Mathematical modelling. Differentiation. biology. Continuity. Integration. Maths Supporting SET. Turning points. Calculus generally. Limits.

### There are 184 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Fractional Calculus III

##### Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

### Logic, Truth Tables and Switching Circuits Challenge

##### Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

### Logic, Truth Tables and Switching Circuits

##### Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

### Truth Tables and Electronic Circuits

##### Stage: 3, 4 and 5

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

### Problem Solving, Using and Applying and Functional Mathematics

##### Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

### Stonehenge

##### Stage: 5 Challenge Level:

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

### There's a Limit

##### Stage: 4 and 5 Challenge Level:

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

### Integral Inequality

##### Stage: 5 Challenge Level:

An inequality involving integrals of squares of functions.

### Mind Your Ps and Qs

##### Stage: 5 Short Challenge Level:

Sort these mathematical propositions into a series of 8 correct statements.

### Air Nets

##### Stage: 2, 3, 4 and 5 Challenge Level:

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

### Generally Geometric

##### Stage: 5 Challenge Level:

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

### Yih or Luk Tsut K'i or Three Men's Morris

##### Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Recent Developments on S.P. Numbers

##### Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

### More Sums of Squares

##### Stage: 5

Tom writes about expressing numbers as the sums of three squares.

### Impossible Sandwiches

##### Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### Proofs with Pictures

##### Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

### Euclid's Algorithm II

##### Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

### Continued Fractions II

##### Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

### Sums of Squares and Sums of Cubes

##### Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

### Transitivity

##### Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

### Modulus Arithmetic and a Solution to Dirisibly Yours

##### Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

### Modulus Arithmetic and a Solution to Differences

##### Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

### Where Do We Get Our Feet Wet?

##### Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

### Angle Trisection

##### Stage: 4 Challenge Level:

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

### Take Three from Five

##### Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Proof of Pick's Theorem

##### Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

### Modular Fractions

##### Stage: 5 Challenge Level:

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

### Postage

##### Stage: 4 Challenge Level:

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

### Mechanical Integration

##### Stage: 5 Challenge Level:

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

##### Stage: 5 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

### Magic W Wrap Up

##### Stage: 5 Challenge Level:

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Can it Be

##### Stage: 5 Challenge Level:

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

### Telescoping Functions

##### Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

### A Computer Program to Find Magic Squares

##### Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

### Whole Number Dynamics IV

##### Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

### A Knight's Journey

##### Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

### Whole Number Dynamics I

##### Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### Try to Win

##### Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

### Rhombus in Rectangle

##### Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

### Breaking the Equation ' Empirical Argument = Proof '

##### Stage: 2, 3, 4 and 5

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

### The Clue Is in the Question

##### Stage: 5 Challenge Level:

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

### Areas and Ratios

##### Stage: 4 Challenge Level:

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.