Can you work out where the blue-and-red brick roads end?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

An introduction to some beautiful results of Number Theory

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Can you rearrange the cards to make a series of correct mathematical statements?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Can you work through these direct proofs, using our interactive proof sorters?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Have a go at being mathematically negative, by negating these statements.

When is it impossible to make number sandwiches?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Sort these mathematical propositions into a series of 8 correct statements.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?