Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

When is it impossible to make number sandwiches?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Can you rearrange the cards to make a series of correct mathematical statements?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Can you work through these direct proofs, using our interactive proof sorters?

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Some diagrammatic 'proofs' of algebraic identities and inequalities.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.