Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Elevens:

Filter by: Content type:
Stage:
Challenge level:

There are 184 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Mod 3

Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

A Biggy

Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Sixational

Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

Prime AP

Stage: 5 Challenge Level:

What can you say about the common difference of an AP where every term is prime?

N000ughty Thoughts

Stage: 4 Challenge Level:

How many noughts are at the end of these giant numbers?

Big, Bigger, Biggest

Stage: 5 Challenge Level:

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Common Divisor

Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Binomial

Stage: 5 Challenge Level:

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

For What?

Stage: 4 Challenge Level:

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Take Three from Five

Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The Golden Ratio, Fibonacci Numbers and Continued Fractions.

Stage: 4

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Plus or Minus

Stage: 5 Challenge Level:

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Particularly General

Stage: 5 Challenge Level:

By proving these particular identities, prove the existence of general cases.

Water Pistols

Stage: 5 Challenge Level:

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Modular Fractions

Stage: 5 Challenge Level:

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Ordered Sums

Stage: 4 Challenge Level:

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Polite Numbers

Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Stage: 5 Challenge Level:

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

How Many Solutions?

Stage: 5 Challenge Level:

Find all the solutions to the this equation.

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

The Triangle Game

Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

A Computer Program to Find Magic Squares

Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Mediant

Stage: 4 Challenge Level:

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Pareq Exists

Stage: 4 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Unit Interval

Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Circle Box

Stage: 4 Challenge Level:

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Round and Round

Stage: 4 Challenge Level:

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Composite Notions

Stage: 4 Challenge Level:

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Number Rules - OK

Stage: 4 Challenge Level:

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Square Pair Circles

Stage: 5 Challenge Level:

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Proof of Pick's Theorem

Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.