It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Four jewellers share their stock. Can you work out the relative values of their gems?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

What fractions can you divide the diagonal of a square into by simple folding?

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you rearrange the cards to make a series of correct mathematical statements?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Prove Pythagoras' Theorem using enlargements and scale factors.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Can you make sense of these three proofs of Pythagoras' Theorem?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

An inequality involving integrals of squares of functions.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

An introduction to some beautiful results of Number Theory

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.