A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Can you rearrange the cards to make a series of correct mathematical statements?

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

What is the largest number of intersection points that a triangle and a quadrilateral can have?

When is it impossible to make number sandwiches?

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

If you think that mathematical proof is really clearcut and universal then you should read this article.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.