Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Climbing Powers:

Filter by: Content type:
Stage:
Challenge level:

There are 184 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Take Three from Five

Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Dalmatians

Stage: 4 and 5 Challenge Level:

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

The Golden Ratio, Fibonacci Numbers and Continued Fractions.

Stage: 4

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Triangle Incircle Iteration

Stage: 4 Challenge Level:

Keep constructing triangles in the incircle of the previous triangle. What happens?

Binomial

Stage: 5 Challenge Level:

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Mod 3

Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

A Biggy

Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Proof of Pick's Theorem

Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

Modular Fractions

Stage: 5 Challenge Level:

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Big, Bigger, Biggest

Stage: 5 Challenge Level:

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Sixational

Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Common Divisor

Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

There's a Limit

Stage: 4 and 5 Challenge Level:

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

N000ughty Thoughts

Stage: 4 Challenge Level:

How many noughts are at the end of these giant numbers?

Prime AP

Stage: 5 Challenge Level:

What can you say about the common difference of an AP where every term is prime?

Polite Numbers

Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Little and Large

Stage: 5 Challenge Level:

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Stage: 5 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Mechanical Integration

Stage: 5 Challenge Level:

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

Contrary Logic

Stage: 5 Challenge Level:

Can you invert the logic to prove these statements?

Notty Logic

Stage: 5 Challenge Level:

Have a go at being mathematically negative, by negating these statements.

Direct Logic

Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

Stage: 5 Short Challenge Level:

Sort these mathematical propositions into a series of 8 correct statements.

Iffy Logic

Stage: 4 and 5 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

The Clue Is in the Question

Stage: 5 Challenge Level:

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

L-triominoes

Stage: 4 Challenge Level:

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Calculating with Cosines

Stage: 4 and 5 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Dodgy Proofs

Stage: 5 Challenge Level:

These proofs are wrong. Can you see why?

Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

A Long Time at the Till

Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

The Great Weights Puzzle

Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Symmetric Tangles

Stage: 4

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.