Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Can you find the areas of the trapezia in this sequence?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Prove Pythagoras' Theorem using enlargements and scale factors.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Can you make sense of the three methods to work out the area of the kite in the square?

When is it impossible to make number sandwiches?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Can you rearrange the cards to make a series of correct mathematical statements?

Can you make sense of these three proofs of Pythagoras' Theorem?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

An introduction to some beautiful results of Number Theory

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?