Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

An article which gives an account of some properties of magic squares.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Can you find the areas of the trapezia in this sequence?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

Have a go at being mathematically negative, by negating these statements.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Can you work through these direct proofs, using our interactive proof sorters?

Sort these mathematical propositions into a series of 8 correct statements.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you rearrange the cards to make a series of correct mathematical statements?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

An inequality involving integrals of squares of functions.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .